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Abstract
We present a generalization of the perturbative construction of the metric
operator for non-Hermitian Hamiltonians with more than one perturbation
parameter. We use this method to study the non-Hermitian scattering
Hamiltonian H = p2/2m + ζ−δ(x + α) + ζ+δ(x − α), where ζ± and α

are respectively complex and real parameters and δ(x) is the Dirac delta
function. For regions in the space of coupling constants ζ± where H is quasi-
Hermitian and there are no complex bound states or spectral singularities,
we construct a (positive-definite) metric operator η and the corresponding
equivalent Hermitian Hamiltonian h. η turns out to be a (perturbatively)
bounded operator for the cases where the imaginary part of the coupling
constants have the opposite sign, �(ζ+) = −�(ζ−). This in particular contains
the PT -symmetric case: ζ+ = ζ ∗

−. We also calculate the energy expectation
values for certain Gaussian wave packets to study the nonlocal nature of h
or equivalently the non-Hermitian nature of H. We show that these physical
quantities are not directly sensitive to the presence of the PT -symmetry.

PACS number: 03.65.−w

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A Hamiltonian operator H is called PT -symmetric if it has the parity-time reversal symmetry,
i.e. [H,PT ] = 0. Since the publication of the pioneering work of Bender and Boettecher
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[1], non-Hermitian PT -symmetric Hamiltonians have received much attention. This has
led to the discovery of a number of interesting theoretical [2–7] as well as experimental [8]
implications of PT -symmetric Hamiltonians. For extensive reviews see [9, 10] and references
therein.

Perhaps the most prominent feature of a non-Hermitian PT -symmetric Hamiltonian H is
that its spectrum is symmetric about the real axis of the complex plane. In particular, if H has a
discrete spectrum, either it is purely real or the nonreal eigenvalues come in complex–conjugate
pairs [1, 7]. It turns out that this is a characteristic property of a wider class of non-Hermitian
Hamiltonian operators called the pseudo-Hermitian operators [11–13]. A Hamiltonian H is
said to be pseudo-Hermitian if its adjoint H † satisfies

H † = ηHη−1, (1)

for some Hermitian invertible operator η. Under the assumption of the diagonalizability of
H, one can show that its spectrum is real if and only if there exists a positive-definite (metric)
operator η satisfying the above equation [10, 12, 13]. In this case H is called a quasi-Hermitian
operator [14].

The diagonalizability of an operator is equivalent to the lack of exceptional points and
spectral singularities [15]. Exceptional points are degeneracy points where some of the
eigenvectors of the operator coalesce. This phenomenon has been the subject of many
theoretical [4, 16] and experimental [17] studies. It may appear for operators acting in
finite or infinite dimensional Hilbert spaces. In contrast, spectral singularities can only appear
for non-Hermitian operators whose spectrum includes a real continuous part (see [18] and
references therein). Mathematically, they are responsible for a break down of eigenfunction
expansion [15]. Physically, they correspond to resonances having a real energy (zero width)
[3, 5, 19].

As we mentioned above, a quasi-Hermitian Hamiltonian is a diagonalizable operator with
a completely real spectrum. This is not however a sufficient reason for using quasi-Hermitian
operators as observables in a quantum theory. This is because the diagonalizability of an
operator and the reality of its spectrum do not necessarily imply the reality of the expectation
values of the operator. The latter condition is in fact equivalent to the Hermiticity of the operator
[10]. The advantage of quasi-Hermitian operators over other non-Hermitian operators is that
they can be made Hermitian by an appropriate modification of the inner product on the Hilbert
space. This is done using positive-definite metric operators η that satisfy (1). The modified
inner product is given by 〈·|·〉η := 〈·|η·〉, where 〈·|·〉 is the inner product that defines the
original Hilbert space H. Endowing the vector space of state vectors with the inner product
〈·|·〉η, we define a new Hilbert space Hphys in which H acts as a Hermitian operator [10, 20].
Hereafter, we assume that H is a quasi-Hermitian operator and call Hphys the physical Hilbert
space.

In general, η is not unique. This means that either one must choose η directly or
fix it indirectly by demanding that a so-called compatible irreducible set of quasi-Hermitian
operators will act as Hermitian operators inHphys [14]. As explained in [10], the latter approach
is very difficult to implement in practice, if the only available information is the form of the
quasi-Hermitian operator H. This is because to select the members of a compatible irreducible
set of quasi-Hermitian operators containing H, we need to construct the most general metric
operator η fulfilling (1). For a quasi-Hermitian Schrödinger operator H = − d2

dx2 + v(x) with
a typical complex potential, this is an extremely difficult open problem. Dealing with this
problem is particularly difficult for complex scattering potentials such as the one studied in the
present paper, because the continuous spectrum of H is doubly degenerate. In what follows,
we will assume that a choice for η and consequently Hphys is made a priori.
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Because η is positive definite, it has a unique positive-definite square root ρ := √
η :

H → H. It is easy to show that ρ : Hphys → H is a unitary operator, i.e.

〈ρ · |ρ·〉 = 〈·|·〉η. (2)

It establishes the unitary equivalence of the (Hilbert space, Hamiltonian) pairs: (Hphys,H)

and (H, h) where h := ρHρ−1, [20, 21]. The operator h is a Hermitian operator acting in
the original Hilbert space H. It is called the equivalent Hermitian Hamiltonian associated
with the metric operator η [22]. (Hphys,H) and (H, h) provide equivalent representations of
the same quantum system. They are respectively called the pseudo-Hermitian and Hermitian
representations [10, 20].

In the pseudo-Hermitian representation we work with the physical Hilbert space
(Hphys, 〈·|·〉η), and the quasi-Hermitian observables H,X := ρ−1xρ, P := ρ−1pρ, . . . , where
x, p, . . . are the usual Hermitian observables. In the Hermitian representation we work with
the usual Hilbert space H and the Hermitian observables h := ρHρ−1, x, p, . . .. A particle
that is described by the state vector |ψ〉 ∈ Hphys and the Hamiltonian H can also described by
the state vector ρ|ψ〉 ∈ H and the Hamiltonian h [10, 20].

Working with the Hermitian representation has the advantage of revealing the underlying
classical system. This is of great importance to derive the physical meaning of the system
[23, 24] and establish a classical-to-quantum correspondence principle. In order to employ
the Hermitian representation, we need to compute the equivalent Hermitian Hamiltonian h.
This in turn requires the calculation of ρ. A well-known method of constructing h is to use the
exponential representation η = e−Q for the metric operator and apply the perturbation scheme
developed in [23, 25]. We will begin our analysis by extending this method for the cases that
the Hamiltonian H involves more than one perturbation parameter. We will then apply this
method to treat the quantum system defined by the double-delta function potential:

v(x) = z−δ(x + a) + z+δ(x − a), z± ∈ C, a ∈ R
+. (3)

The spectral properties of this and analogous complex point interaction potentials have been
considered in [26]. See also [27, 28]. A thorough investigation of (3) that addresses the issue
of the presence of spectral singularities and provided means for locating the regions in the
space M of coupling constants where the Hamiltonian is quasi-Hermitian is conducted in [15].

In this paper we offer an explicit construction of an appropriate metric operator for H in a
three-dimensional subspace of M that includes the PT -symmetric potentials of type (3) with
z− = z∗

+. Using this metric operator we determine the equivalent Hermitian Hamiltonians
and compute energy expectation values for some Gaussian wave packets. Our results are
valid irrespective of the presence of the PT -symmetry. Therefore, they allow for a direct
examination of the physical consequences of imposing the PT -symmetry.

2. Spectral representation of metric operator for a scattering potential

Consider a non-Hermitian Hamiltonian H with a complex-valued scattering potential v(x) :
R → C. Suppose that v(x) depends linearly on a set 	z := (z1, z2, . . . , zd) of complex coupling
constants so that H † can be obtained by replacing 	z with 	z∗ in v(x). A typical example is
the double-delta function potential (3). For the cases where H has no bound states (square-
integrable eigenfunctions), its spectrum is doubly degenerate and its eigenvalue equation takes
the form

H
∣∣ψ	z

a,k

〉 = k2
∣∣ψ	z

a,k

〉
. (4)
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Here a ∈ {1, 2} is the degeneracy label and k ∈ R
+ is the spectral label. In the absence of

spectral singularities H is a diagonalizable operator, and we can use
∣∣ψ	z

a,k

〉
together with a set

of (generalized) eigenvectors
∣∣φ	z

a,k

〉
of H † to construct a complete biorthonormal system, i.e.

〈
φ	z

a,k

∣∣ψ	z
b,q

〉 = δabδ(k − q),

2∑
a=1

∫ ∞

0

∣∣ψ	z
a,q

〉〈
φ	z

a,k

∣∣ dk = 1. (5)

In this case the following formula gives a (positive-definite) metric operator for the Hamiltonian
H [29]:

η =
2∑

a=1

∫ ∞

0

∣∣φ	z
a,k

〉〈
φ	z

a,k

∣∣ dk. (6)

It is easy to see that η satisfies (1).5 We can use this operator to define the positive-definite
inner product 〈·|·〉η := 〈·|η·〉 and the corresponding Hilbert space Hphys in which H acts as a
Hermitian operator.

Next, we recall that because of the arbitrariness in the choice of the biorthonormal system
(in particular |φ	z

a,k〉), the metric operator (6) is not unique [30]. In what follows we will try

to choose the biorthonormal system
{∣∣ψ	z

a,k

〉
,
∣∣φ	z

a,k

〉}
in such a way that in the Hermitian limit,

where all the coupling constants are real, the metric operator (6) tends to unity.
Since H † can be found by replacing 	z with 	z∗ in H, the simplest way to find a set of

eigenvectors of H † is to replace 	z with 	z∗ in
∣∣ψ	z

a,k

〉
. It is however not difficult to see that in

general
{∣∣ψ	z

a,k

〉
,
∣∣ψ	z∗

a,k

〉}
does not satisfy (5). In fact, one can show that(〈

ψ	z∗
1,k

∣∣ψ	z
1,q

〉 〈
ψ	z∗

1,k

∣∣ψ	z
2,q

〉
〈
ψ	z∗

2,k

∣∣ψ	z
1,q

〉 〈
ψ	z∗

2,k

∣∣ψ	z
2,q

〉
)

= δ(k − q)K (7)

where K = (Kab) is a 2 × 2 matrix that is generally different from the identity matrix.
One way of constructing a metric operator with an appropriate Hermitian limit (namely

the identity operator) is to find a matrix U(	z; k) satisfying

U†(	z∗; k)K(	z; k)U(	z; k) = I2×2 (8)

and use the biorthonormal system
{∣∣ψ̃	z

a,k

〉
,
∣∣φ̃	z

a,k

〉}
defined by∣∣φ̃	z

a,k

〉
:= Uab(	z∗; k)

∣∣ψ 	z∗
b,k

〉
,

∣∣ψ̃	z
a,k

〉
:= Uab(	z; k)

∣∣ψ	z
b,k

〉
. (9)

This approach relies on the solution of equation (8). It is clear form (7) that

K†(	z∗; k) = K(	z; k). (10)

In view of this identity we can rewrite (8) as

U†(	z∗; k) K†(	z∗; k)
1
2 K(	z; k)

1
2 U(	z; k) = I2×2. (11)

This equation has infinitely many solutions. Perhaps the simplest solution is

U = K− 1
2 . (12)

In general, K− 1
2 has an extremely complicated form. This leads to serious computation

difficulties in the perturbative expansion of the metric operator. Furthermore, there is no
assurance that this choice of the biorthonormal system yields a bounded metric operator.

In [31] this method is employed to calculate a metric operator for a delta function potential,
v(x) = z δ(x), with a complex coupling constant z having a positive real part. In this case, it
yields a perturbatively bounded metric operator. We will discuss the possibility of applying
this method for the complex double-delta function potential (3) in section 4.
5 Here we assume that H has no bound sates. If there are N bound sates with real energies, (6) is generalized to
η = ∑aj

a=1

∑N
j=1 |φ	z

a,j 〉〈φ	z
a,j | +

∑2
a=1

∫ ∞
0 |φ	z

a,k〉〈φ	z
a,k | dk, where aj denotes the degree of degeneracy of the j th

eigenvalue.
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3. The perturbative expansion of h

Let H : H → H be a quasi-Hermitian Hamiltonian of the form

H = H(0) + H(1), H (1) :=
d∑

i=1

ziHi (13)

where H(0), H1, . . . , Hd are Hermitian operators and z1, z2, . . . , zd ∈ C are complex
parameters. Suppose that |zi | � 1, for all i ∈ {1, 2, . . . , d}, so that we can use them as
perturbation parameters. Then, (13) is a perturbative expansion of H, with H(0) and H(1)

respectively denoting the zeroth- and the first-order terms.
Consider the perturbative expansion of an arbitrary operator A depending on

z1, z2, . . . , zd . Let n1, n2, . . . nd be non-negative integers and N := n1 + n2 + · · · + nd . Then
we call the sum of terms proportional to z

n1
1 z

n2
2 · · · znd

d ‘the Nth-order term’ of this expansion
and denote it by A(N). We also use O(zN) to label the sum of the terms of order greater than
or equal to N.

Because the first-order term of the Hamiltonian is generally non-Hermitian, we write it as

H(1) = H
(1)
h. + H

(1)
a.h., (14)

where H
(1)
h. and H

(1)
a.h. stand for the Hermitian and anti-Hermitian parts of H(1), respectively.

In view of quasi-Hermiticity of H, there is a positive-definite metric operator η satisfying
H † = ηHη−1. This relation together with equations (13) and (14) implies

ηHη−1 = H(0) + H
(1)
h. − H

(1)
a.h.. (15)

Our aim is to use this equation to construct a perturbative expansion for a metric operator with
the correct Hermitian limit:

η = 1 + η(1) + η(2) + O(z3), (16)

and the corresponding equivalent Hermitian Hamiltonian h.
First, we recall that because η is a positive-definite operator, there is a Hermitian operator

Q satisfying [25]

η = e−Q. (17)

Next, we use (15), (17), the Baker–Campbell–Hausdorff identity and the perturbative
expansion of Q, namely

Q = Q(1) + Q(2) + O(z3), (18)

to obtain [20]

H † = H + [H,Q] + 1
2 [[H,Q],Q] + O(z3)

=H(0) + H(1) + [H(0),Q(1)] + [H(0),Q(2)] + [H(1),Q(1)] + 1
2 [[H(0),Q(1)],Q(1)] +O(z3).

(19)

Comparing the right-hand side of (15) with the first-order term of the last equation, we have

H
(1)
h. − H

(1)
a.h. = H

(1)
h. + H

(1)
a.h. + [H(0),Q(1)], (20)

or equivalently

[H(0),Q(1)] = −2H
(1)
a.h.. (21)

It is also clear from (15) that the second-order term of H † vanishes. This implies that the
second-order term in (19) must satisfy

[H(1),Q(1)] + [H(0),Q(2)] + 1
2 [[H(0),Q(1)],Q(1)] = 0. (22)

5
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Similarly, using

ρ = e−Q/2 (23)

we find the perturbative expansion of the equivalent Hermitian Hamiltonian h:

h = ρHρ−1 = H +

[
H,

Q

2

]
+

1

2

[[
H,

Q

2

]
,
Q

2

]
+ O(z3)

= H(0) + H(1) +
1

2

{
[H(0),Q(1)] + [H(1),Q(1)] + [H(0),Q(2)]

+
1

4
[[H(0),Q(1)],Q(1)]

}
+ O(z3). (24)

In light of (21) and (22), we can simplify this expression as follows:

h = H(0) + H
(1)
h. − 1

8 [[H(0),Q(1)],Q(1)] + O(z3) = H(0) + H
(1)
h. + 1

4

[
H

(1)
a.h.,Q

(1)
]

+ O(z3).

(25)

This is a straightforward generalization of the results of [23] to the cases involving more than
one complex perturbation parameter. See also [32].

Next, we use the identity Q(1) = −η(1) to express the integral kernel h(x, y) := 〈x|h|y〉
of the equivalent Hermitian Hamiltonian. This yields

h(x, y) = H(0)(x, y) + H
(1)
h. (x, y) − 1

4
〈x|[H(1)

a.h., η
(1)

]|y〉 + O(z3)

= H(0)(x, y) + H
(1)
h. (x, y)

− 1

4

∫
R

(
H

(1)
a.h.(x, y ′)η(1)(y ′, x) − η(1)(x, y ′)H (1)

a.h.(y
′, x)

)
dy ′ + O(z3). (26)

Having obtained the equivalent Hermitian Hamiltonian, we can examine the physical
content of the model using its Hermitian representation. Alternatively, we can pursue the
study of this system in its pseudo-Hermitian representation. This requires the construction of
the pseudo-Hermitian observables O = ρ−1oρ, where o = x, p, . . . are the usual Hermitian
observables. Following a similar approach to the one leading to (24), we find

O = ρ−1oρ = o −
[
o,

Q

2

]
+

1

2

[[
o,

Q

2

]
,
Q

2

]
+ O(z3)

= o − 1

2

{
[o,Q(1)] + [o,Q(2)] − 1

4
[[o,Q(1)],Q(1)]

}
+ O(z3). (27)

4. The double-delta function potential

4.1. Eigenfunctions and the K-matrix

In this subsection we summarize some of the properties of the double-delta function potential
that are reported in [15].

Consider the time-independent Schrödinger equation:

Hψ =
[
− h̄2

2m

d2

dx2
+ ζ+δ(x − α) + ζ−δ(x + α)

]
ψ = Eψ. (28)

Let 	 be an arbitrary length scale. Defining the dimensionless quantities

z± := 2m	ζ±
h̄2 , x := x

	
, a := α

	
, E := 2m	2E

h̄2 (29)

6
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we express the corresponding dimensionless Hamiltonian as

H := 2m	2H

h̄2 = − d2

dx2
+ z+δ(x − a) + z−δ(x + a). (30)

We can easily solve the eigenvalue problem for H and obtain the following expression for the
eigenvectors ψ	z

1,k of the Hamiltonian H:

ψ	z
1,k(x) = 1√

2π

{
eikx − iz−

2k
[e−ik(x+2a) − eikx]θ(−x − a) − iz+

2k
[eikx − e−ik(x−2a)]θ(x − a)

}
,

(31)

ψ	z
2,k(x) = ψ	z

1,−k(x), (32)

where θ(x) := [sign(x) + 1]/2 is the step function. Clearly,

ψ	z∗
1,k(x) = 1√

2π

{
eikx − iz∗

−
2k

[e−ik(x+2a) − eikx]θ(−x − a) − iz∗
+

2k
[eikx − e−ik(x−2a)]θ(x − a)

}
,

(33)

ψ	z∗
2,k(x) = ψ	z∗

1,−k(x), (34)

and the entries of the matrix K of equation (7) takes the form [15]

K11(k) = K22(k) = 1 +
z2
− + z2

+

4k2
, (35)

K12(k) = (4k2)−1[iz−(2k − iz−) e2iak − iz+(2k + iz+) e−2iak], (36)

K21(k) = K12(−k). (37)

As we can infer from these equations, the matrix K−1/2 has a rather complicated expression.
This makes a direct application of the method of section 2 extremely difficult. In what follows
we will try to pursue a different approach for constructing a metric operator with a correct
Hermitian limit. We will also demand that, at least to the first order of perturbation, the metric
operator be densely defined and bounded [10].

Similar to the case of the single-delta function potential, v(x) = zδ(x), the fact that we
have exact and closed-form expressions for the eigenfunctions of the Hamiltonian (30) does
mean that we can perform an exact calculation of a metric operator. Note that the latter requires
choosing an appropriate set of eigenfunctions

∣∣φ	z
ak

〉
and evaluating the integral in (6) exactly.

Lack of a systematic method of selecting
∣∣φ	z

ak

〉
(alternatively the matrix-valued function U

appearing in (8)) is the main reason why we conduct a perturbative analysis of the problem.

4.2. Perturbative calculation of the metric operator

For the cases that (z±) > 0 and |ε±| := ∣∣ �(z±)

(z±)

∣∣ � 1, the Hamiltonian H is a quasi-Hermitian

operator [15]. Therefore, ε± := �(z±)

(z±)
may be employed as perturbation parameters. As shown

in appendix A, this choice leads to a metric operator that does not tend to the identity operator
in the Hermitian limit (ε± → 0). An alternative choice for perturbation parameters is the

7
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coupling constants (z+, z−) =: 	z themselves. In the remainder of this section we construct a
metric operator η using these perturbation parameters.

According to (35)–(37), the zeroth-order term of the matrix K obtained for the eigenvectors
(31)–(34) is the identity matrix. This in turn implies that the zeroth-order term for the
corresponding metric operator is the identity operator. Yet this metric operator is plagued with
the problem of unboundedness and the lack of a dense domain.

In order to construct a densely defined and bounded metric operator, we use the following
ansatz for the eigenvectors of H †:

∣∣φ	z
a,k

〉
:= ∣∣ψ 	z∗

a,k

〉
+ z∗

−
2∑

b=1

u−,b(k)
∣∣ψ 	z∗

b,k

〉
+ z∗

+

2∑
b=1

u+,b(k)
∣∣ψ 	z∗

b,k

〉
, (38)

where u±,b(k)’s are free weight functions. In appendix B we describe a procedure for selecting
a proper set of weight functions. We could do this successfully only for the special case that
the coupling constants differ by a sign: z+ = −z− =: z. In this case, we find (see appendix B)

φ	z
1,k(x) =

(
1 − z∗

2ik

)
ψ

	z∗
1,k(x) +

z∗ cos 2ak

2ik
ψ

	z∗
2,k(x) + O(z2), (39)

φ	z
2,k(x) = φ	z

1,−k(x), (40)

η(x, y) = δ(x − y) + η(1)(x, y) + O(z2), (41)

η(1)(x, y) = i�(z)

2
sign(x − y)[θ(x+ + y+) − θ(x− + y−)], (42)

where

x± := x ± a, y± := y ± a. (43)

The metric operator (41) has the following desirable properties.

(1) It tends to the identity operator in the Hermitian limit.

(2) It is a densely defined bounded operator.

(3) It satisfies the differential equation for the (pseudo-) metric operators associated with
pseudo-Hermitian Schrödinger operators [33].

(4) For the PT -symmetric case corresponding to a purely imaginary z, it reduces to the metric
operator obtained in [6].

We would like to emphasize that the above construction is valid only for the case that the
Hamiltonian is quasi-Hermitian. Otherwise, the metric operator will not satisfy the pseudo-
Hermiticity relation (1). Therefore, it is of outmost importance to determine the range of
valued of z for which the Hamiltonian is quasi-Hermitian. These are the regions where H has
no spectral singularities or complex eigenvalues. Figure 1 shows the regions in the complex
az-plane where the Hamiltonian has spectral singularities and bound states. This figure is
obtained using the contour integral method described in [15].

For small values of |z| with |(z)| > |�(z)|, H has a bound state (an eigenvalue with
a square-integrable eigenfunction). This corresponds to a real eigenvalue if and only if
|�(z)| = 0, [15]. In the darkest region shown in the right-hand figure the Hamiltonian is free
of spectral singularities and bound states. This is a region where it is quasi-Hermitian, and
(41) provides a reliable metric operator.
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Figure 1. The figure on left shows the curves in the az-plane along which H has spectral
singularities. Here r := a(z) and s := a�(z). The vertical dashed lines correspond to the PT -
symmetric case with the purely imaginary z. The diagonal lines are the lines s = ±r . The figure on
the right shows the number of bound states (generally complex eigenvalues with square-integrable
eigenfunctions). As the color changes from the darkest to lightest, the number of bound sates will
changes from 0 to 4.

4.3. Equivalent Hermitian Hamiltonian

Inserting (42) into (26) and doing the necessary calculations, we obtain the following
expression for the equivalent Hermitian operator h defined by the metric operator (41):

h(x, y) = δ(x − y)

(
− d2

dx2
+ (z)[δ(x−) − δ(x+)]

)

+
�(z)2

8
{δ(x+)[θ(y+) − θ(y − 3a)] + δ(x−)[θ(y + 3a) − θ(y−)]

+ δ(y+)[θ(x+) − θ(x − 3a)] + δ(y−)[θ(x + 3a) − θ(x−)]} + O(z3). (44)

If we multiply h(x, y) by h̄2

2m	3 and use (29), we obtain the dimensionful Hermitian Hamiltonian
operator:

h(x, y) = δ(x − y)

(
− h̄2

2m

d2

dx2
+ (ζ ) [δ(x − α) − δ(x + α)]

)

+
m�(ζ )2

4h̄2 {δ(x + α)[θ(y + α) − θ(y − 3α)] + δ(x − α)[θ(y + 3α) − θ(y − α)]

+ δ(y + α)[θ(x + α) − θ(x − 3α)] + δ(y − α)[θ(x + 3α) − θ(x − α)]} + O(ζ 3),

(45)

where ζ = ζ+ = h̄2z
2m	

. The second-order (nonlocal) part of the Hamiltonian (45) is equivalent
to the anti-Hermitian part of the Hamiltonian (30). In the following, we study the effect of
this nonlocal part on the energy expectation value, Eψ := 〈ψ |h|ψ〉, for a particle described
by a normalized Gaussian position wavefunction ψ ∈ L2(R).

9
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The action of h on an arbitrary element ψ of the Hilbert space H is given by

〈x|h|ψ〉 = − h̄2

2m
ψ ′′(x) + (ζ ) [δ(x − α)ψ(α) − δ(x + α)ψ(−α)]

+
m[�(ζ )]2

4h̄2

{
[θ(x + α) − θ(x − 3α)]ψ(−α) + [θ(x + 3α) − θ(x − α)]ψ(α)

+ δ(x + α)

∫ 3α

−α

ψ(y) dy + δ(x − α)

∫ α

−3α

ψ(y) dy

}
+ O(ζ 3). (46)

The first line of this equation coincides with the action of the Hermitian part of the original
quasi-Hermitian Hamiltonian, namely Hh. = H(0) + H(1)

h. .
In view of (46),

Eψ := 〈ψ |h|ψ〉 = h̄2

2m

∫ ∞

−∞
|ψ ′(x)|2 dx + (ζ )[|ψ(α)|2 − |ψ(−α)|2]

+
m[�(ζ )]2

2h̄2 
(

ψ∗(−α)

∫ 3α

−α

ψ(x) dx + ψ∗(α)

∫ α

−3α

ψ(x) dx

)
+ O(ζ 3), (47)

where ψ is a normalized wavefunction. A typical example is a Gaussian wave packet,

ψ1(x) = 1

(πσ 2)1/4
exp

(
− x2

2σ 2
+ ikx

)
, (48)

with the mean position 〈x〉ψ1 := 〈ψ1|x|ψ1〉 = 0 and the mean momentum 〈p〉ψ1 :=
〈ψ1|p|ψ1〉 = h̄k. Substituting (48) into (47), we find

Eψ1 = h̄2

4m
(2k2 − σ−2) +

m[�(ζ )]2

√
2h̄2

U(α, σ, k) + O(ζ 3), (49)

where

U(α, σ, k) := exp

(
−α2 + k2σ 4

2σ 2

)


{
e−ikα

[
erf

(
ikσ 2 + 3α√

2σ

)
− erf

(
ikσ 2 − α√

2σ

)]}
(50)

describes the effect of the nonlocal part of h (equivalently the non-Hermitian part of H), and
erf(x) := 2√

π

∫ x
0 e−t2

dt is the error function. Figure 2 shows the plots of U(α, σ, k) and
U(α, σ, 0) for α = 1. It turns out that the non-Hermiticity effect attains its maximum around
(σ, k) = (1.5α, 0) and decays rapidly for the mean momentums 〈p〉ψ1 = h̄k outside the range(− h̄

α
, h̄

α

)
.

Next, we compute the energy expectation value for a stationary Gaussian wave packet
with the mean position 〈x〉ψ2 = x0:

ψ2(x) = 1

(πσ 2)1/4
exp

(
− (x − x0)

2

2σ 2

)
. (51)

In view of (47), we have

Eψ2 = h̄2

4mσ 2
+

[ζ ]

σ
√

π
V (α, σ, x0) +

m[�(ζ )]2

2
√

2h̄2
W(α, σ, x0) + O(ζ 3), (52)

V (α, σ, x0) := exp(−σ−2(x0 − α)2) − exp(−σ−2(x0 + α)2), (53)

W(α, σ, x0) := exp

(
− (α + x0)

2

2σ 2

) {
erf

(
α + x0√

2σ

)
+ erf

(
3α − x0√

2σ

)

+ e
2αx0
σ2

[
erf

(
α − x0√

2σ

)
+ erf

(
3α + x0√

2σ

)] }
. (54)

Here W(α, σ, x0) reflects the effect of the nonlocal part of h (non-Hermitian part of H).

10
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Figure 2. Plots of U(1, σ, k) (on the left) and U(1, σ, 0) (on the right).

Figure 3. Plots of W(α, σ, x0) for σ ∈ [0.03, 0.6] (on the left) and σ ∈ [0.2, 10] (on the right) in
units where α = 1.

Figure 3 shows the plots of W(1, σ, x0) for σ ∈ [0.03, 0.6] and σ ∈ [0.2, 10]. The non-
Hermitian effect attains its maximum at (x0 ≈ 0, σ ≈ 1.5α). For small values of σ , it persists
for wave packets with the mean position belonging to open intervals (±α − 1.5σ,±α + 1.5σ).
Outside these intervals it decays rapidly.

4.4. pseudo-Hermitian position and momentum operators

To calculate the dimensionless pseudo-Hermitian position and momentum operators
corresponding to the metric operator (41)–(42), we substitute x and p for o in (27) and
use Q(1) = −η(1) and the identities:

〈x|[x,A]|y〉 = (x − y)〈x|A|y〉, 〈x|[p,A]|y〉 = −i(∂x − ∂y)〈x|A|y〉,
where A is a linear operator. This yields

〈x|X|y〉 = 〈x|x|y〉 +
i�(z)

4
|x − y|[θ(x+ + y+) − θ(x− + y−)] + O(z2), (55)

〈x|P |y〉 = 〈x|p|y〉 + �(z)δ(x − y)[θ(x+) − θ(x−)] + O(z2). (56)

11
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Next we obtain the dimensionful pseudo-Hermitian position (X := 	X) and momentum(
P := h̄

	
P

)
operators:

〈x|X|y〉 = 〈x|x|y〉 +
im�(ζ )

2h̄2 |x − y|[θ(x + y + 2α) − θ(x + y − 2α)] + O(ζ 2), (57)

〈x|P|y〉 = 〈x|p|y〉 +
2m�(ζ )

h̄
δ(x − y) [θ(x + α) − θ(x − α)] + O(ζ 2). (58)

4.5. Calculating metric for more general cases

In section 4.2, we constructed a metric operator with the desired Hermitian limit for the
cases that the coupling constants ζ± differed by a sign. Our construction was based on the
spectral method that yielded η in terms of its spectral decomposition. An alternative method
of constructing a metric operator for a Schrödinger operator, − h̄2

2m
d2

dx2 + v(x), is the one based
on the universal differential equation [33]:(

−∂2
x + ∂2

y +
2m

h̄2 [v∗(x) − v(y)]

)
η(x, y) = 0. (59)

In this section we use this method to extend the results of the preceding sections to a more
general class of double-delta function potentials.

Consider a quasi-Hermitian Hamiltonian operator,

H1 = H(0) + H(1)
a.h. = − p2

2m
+ v1(x), (60)

with a purely imaginary potential v1 = i� (v1), and a corresponding metric operator η1

satisfying (59) with v = v1. Let ζ be a complex perturbation parameter such that v1 is
proportional to �(ζ ). This suggests the following perturbative expansion for η:

η1 = 1 + η
(1)
1 + O(ζ 2). (61)

Next, suppose that the potential v1 is supplemented with a real part v2 that is proportional
to (ζ ). Then it is easy to see that up to the first order of perturbation, η1 satisfies (59) for the
potential v1(x) + v2(x), i.e. η1 is a metric operator also for the Hamiltonian

H2 = H1 + H(1)
h. = − p2

2m
+ v1(x) + v2(x). (62)

Furthermore, in light of (25), the equivalent Hermitian Hamiltonian for H1 and H2 are
respectively given by

h1 = H(0) − 1
4

[
H(1)

a.h., η
(1)
1

]
+ O(ζ 3)

h2 = H(0) + H(1)
h. − 1

4

[
H(1)

a.h., η
(1)
1

]
+ O(ζ 3) = h1 + H(1)

h. + O(ζ 3).
(63)

Now, we confine our attention to the double-delta function potential. In section 4.2, we
constructed an appropriate metric operator, namely (41), for a double-delta function potential
whose couplings differed by a sign. In view of the argument given in the preceding paragraph,
it is also a valid metric operator for the more general case that the real part of the coupling
constants are arbitrary (but small) and their imaginary part differ by a sign:

H = − p2

2m
+ ζ+δ(x − α) + ζ−δ(x + α), �(ζ+) = −�(ζ−). (64)

Another class of potentials that admits (41) as an appropriate metric operator is [27]

v(x) = −ξδ(x) + iλ [δ(x − α) − δ(x + α)] , ξ ∈ R
+, λ ∈ R. (65)

12
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Figure 4. The curves along which we have spectral singularities (the figure on the left) and the
contour plot of the number of bound states with (the figure on the right) for the PT -symmetric
Hamiltonian (64) with ζ+ = ζ ∗− =: ζ . As color changes from the darkest to the lightest, the number
of bound sates takes the values 0, 1, 2, 4, respectively. The vertical dashed lines correspond to the
purely imaginary coupling ζ , and the diagonal (dotted-dashed) lines are the lines r = ±s. There
is a bound state within the circle (r + 1/2)2 + s2 = 1/4.

Next, we use the metric operator (41) to compute the equivalent Hermitian Hamiltonian
h for the Hamiltonian (64). Using (63) and performing the necessary calculations, we find

h(x, y) = δ(x − y)

(
− h̄2

2m

d2

dx2
+ (ζ+)δ(x − α) + (ζ−)δ(x + α)

)

+
m[�(ζ+)]2

4h̄2 {δ(x + α)[θ(y + α) − θ(y − 3α)] + δ(x − α)[θ(y + 3α) − θ(y − α)]

+ δ(y + α)[θ(x + α) − θ(x − 3α)] + δ(y − α)[θ(x + 3α) − θ(x − α)]} + O(ζ 3).

(66)

As we expected the nonlocal part of h is identical with the one obtained for the special case
where coupling constants differ by a sign.

The general PT -symmetric double-delta function potential (ζ+ = ζ ∗
− =: ζ ) corresponds

to a special case of the Hamiltonian (64). Our analysis shows that, within the framework of
perturbation theory, the physical effects associated with the non-Hermiticity of the Hamiltonian
H, that are contained in the nonlocal part of the equivalent Hermitian Hamiltonian h, are not
sensitive to the presence of the PT -symmetry. This is because by perturbing the Hermitian
part of the Hamiltonian we may destroy its PT -symmetry while preserving the same non-
Hermitian (nonlocal) effects on the physically observables quantities like energy expectation
values.

Finally, we wish to stress that the above calculations of the metric operator and the
equivalent Hermitian Hamiltonian are reliable only within the regions in the space of coupling
constants that the Hamiltonian does not posse spectral singularities or bound states with
complex eigenvalues. In figure 4 we give the location of the spectral singularities and the

13
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number of bound sates for the general PT -symmetric case6. In the region painted by the
darkest color in the r–s-plane (where r := 2am	

h̄2 (ζ ), s := 2am	

h̄2 �(ζ )) the Hamiltonian has
no spectral singularities or bound states. Hence, in this region it is quasi-Hermitian, and (41)
gives a reliable metric operator provided that we stay within the part of this region that is close
to the origin.

5. Concluding remarks

In this paper we have employed the pseudo-Hermitian formulation of quantum mechanics
to study a quantum system defined by a Hamiltonian with two complex point interactions,
H = p2/2m + ζ−δ(x + α) + ζ+δ(x − α). This requires the construction of an appropriate
metric operator that reveals the structure of the physical Hilbert space and also the observables
of the theory. It further allows for the construction of an equivalent Hermitian Hamiltonian
operator.

The main difficulty one encounters in trying to construct a metric operator for H is that
depending on the choice of the eigenfunctions of H †, one obtains a ‘metric operator’ that
may be ill-defined or unbounded. In this paper we could successfully construct a densely
defined and bounded metric operator to the first order of perturbation for the special cases
that the coupling constants ζ± differed by a sign. We use this metric operator to compute
the corresponding equivalent Hermitian operator. This in turn allowed us to compute energy
expectation values for a class of Gaussian wave packets. We then investigated the physical
consequences of the non-Hermiticity of the Hamiltonian H by examining the contribution of
the anti-Hermitian part of the Hamiltonian (equivalently the nonlocal part of the equivalent
Hermitian Hamiltonian) to the energy expectation values.

In view of the fact that the integral kernel of the metric operator is a solution of a certain
differential equation, we could generalize our results to the cases that only the imaginary part
of the coupling constants differed by a sign. This allowed for the application of our results for a
general class of double-delta function potentials that included all PT -symmetric double-delta
function potentials as a subclass. Our investigation of the physical effects of non-Hermiticity
shows that (to the first nontrivial order of perturbation theory) these effects are not directly
sensitive to the presence of the PT -symmetry. This is because we can easily perturb the real
part of the potential in such a way that the effects of non-Hermiticity is left unaltered while
the PT -symmetry is destroyed. Note however that if such a perturbation does not violate the
quasi-Hermiticity of the Hamiltonian, the Hamiltonian will necessarily possess a symmetry
that similarly to the PT -symmetry is generated by an invertible antilinear operator [13, 30].
This symmetry cannot however be interpreted as the spacetime reflection symmetry.
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Appendix A. Another choice for the weight functions

If
∣∣ �(z±)

(z±)

∣∣ � 1, and (z±) > 0, the Hamiltonian (30) is a quasi-Hermitian operator [15], and

we can use ε± := �(z±)

(z±)
as perturbation parameters for a perturbative calculation of a metric

operator. This requires selecting an appropriate set of
∣∣φ	z

a,k

〉
that would lead to a densely

defined bounded metric operator. A natural candidate is the following direct generalization of
the expression obtained for a delta function potential with a complex coupling constant [31]:

∣∣φ	z
a,k

〉 = u(z+, z−; k)
∣∣ψ 	z∗

a,k

〉
, u(z+, z−; k) :=

(
1 +

z+z−
γ 2k2

)− 1
2

, (A.1)

where γ ∈ R
+ is arbitrary and

∣∣ψ 	z∗
a,k

〉
are given in (33)–(34).

In view of (6), (34) and (A.1),

η(x, y) =
∫ ∞

−∞
ψ	z∗

1,k(x)
(
ψ	z∗

1,k(y)
)∗

W(z+, z−, k) dk, W(z+, z−, k) := |u(z+, z−, k)|2.
(A.2)

Introducing κ := γ k√
r+r−

:= ρk, ε1 := ε+ + ε− and ε2 := ε+ε−, we can expand W =
W(z+, z−, k) = W

(
r+(1 + iε+), r−(1 + iε−), κ

ρ

)
in powers of ε:7

W = κ2

1 + κ2

{
1 − 2ε2

1 + κ2
+

ε2
1 + ε2

2

(1 + κ2)2

}− 1
2

= κ2

1 + κ2

{
1 +

ε2

1 + κ2
− ε2

1

2(1 + κ2)2

}
+ O(ε4).

(A.3)

Employing this relation in (A.2) and performing the necessary calculations, we find

η(x, y) = η0,0(x, y) + η+,+(x, y) + η−,−(x, y)

+ η+(x, y) + η−(x, y) + η−,+(x, y) + (x ↔ y)∗ + O(ε4), (A.4)

where

η0,0(x, y) = 1

2ρ
	E · 	I0

(
x − y

ρ

)
, (A.5)

η±,±(x, y) = ρ

4
r2
±
(
1 + ε2

±
)
θ(±x∓)θ(±y∓) 	E ·

[
	I2

(
x − y

ρ

)
− 	I2

(
x∓ + y∓

ρ

)]
, (A.6)

η±(x, y) = ± r±(1 + iε±)

2
θ(±y∓) 	E ·

[
	I1

(
x − y

ρ

)
− 	I1

(
x∓ + y∓

ρ

)]
, (A.7)

η−,+(x, y) = ±γ 2

4ρ
θ(y−)θ(−x+)(1 + ε2 + i(ε+ − ε−)) 	E ·

[
	I2

(
x+ + y+

ρ

)

+ 	I2

(
x− + y−

ρ

)
− 	I2

(
x − y

ρ

)
− 	I2

(
x − y + 4a

ρ

)]
, (A.8)

	E :=
(

1, ε2,−ε2
1

2

)
=

(
1, ε+ε−,− (ε+ + ε−)2

2

)
,

	In := (In,1, In,2, In,3), n = 0, 1, 2, (A.9)

In,m(α) := 1

2π

∫ ∞

−∞

k2−n eikα

(1 + k2)m
dk, 	Im := (I0,m, I1,m, I2,m), m � 1, (A.10)

7 Here εN stands for the sum of terms proportional to εa
+εb− with a + b = N .
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	I1 =
(

δ(α) − e−|α|

2
,

i e−|α|

2
sign(α),

e−|α|

2

)
, 	I2 = e−|α|

4
(1 − |α|, iα, 1 + |α|), (A.11)

	I3 = e−|α|

16
(1 + |α| − α2, iα(1 + |α|), 3(1 + |α|) + α2), (A.12)

x± and y± are given by (43) and (x ↔ y) stands for the sum of the previous terms with x and
y interchanged.

It is not difficult to see that 	E = (1, 0, 0) +O(ε2) and 	E · 	In = In,1 +O(ε2). Inserting the
values of In,1 given by (A.11)–(A.12) into (A.5)–(A.8) and rearranging the terms, we have

η(x, y) = 1

2
δ(x − y) + e− |x−y|

ρ

{−1

4ρ
+

ρ

8

[
r2

+θ(x−)θ(y−)

+ r2
−θ(−x+)θ(−y+)

] − γ 2

8ρ
θ(−x+)θ(y−)(1 + iε+ − iε−)

+
ir+

4
θ(y−) sign(x − y)(1 + iε+) − ir−

4
θ(−y+) sign(x − y)(1 + iε−)

}

+ e− |x−+y−|
ρ

{
−ρ

8
r2

+θ(x−)θ(y−) +
γ 2

8ρ
θ(−x+)θ(y−)(1 + iε+ − iε−)

− ir+

4
θ(y−) sign(x− + y−)(1 + iε+)

}

+ e− |x++y+ |
ρ

{
−ρ

8
r2
−θ(−x+)θ(−y+) +

γ 2

8ρ
θ(−x+)θ(y−)(1 + iε+ − iε−)

− ir−
4

θ(−y+) sign(x+ + y+)(1 + iε−)

}

− e− |x−y+4a|
ρ

{
γ 2

8ρ
θ(−x+)θ(y−)(1 + iε+ − iε−)

}
+ (x ↔ y)∗ + O(ε2). (A.13)

As suggested by this relation, η is actually densely defined and (perturbatively) bounded, but
in the Hermitian limit it does not tend to the identity operator.

Appendix B. A proper choice for the weight functions

One can check that unless one fixes u±,b(k) in a very special way the metric operator
corresponding to (38) is an unbounded operator. In order to obtain such a special choice
we consider the ansatz

φ	z
1,k(x) = ψ

	z∗
1,k(x) + φv

1,k(x) + O(z2), (B.1)

φ	z
2,k(x) = φ	z

1,−k(x), (B.2)

where ψ
	z∗

a,k(x) are given by equations (33)–(34),

φv
1,k(x) := i

k

∑
λ=±

m∑
j=1

e−ibj kz∗
λ

(
v∗

j,1,λψ
	z∗

1,k(x) + v∗
j,2,λψ

	z∗
2,k(x)

)
+ O(z2)

= i√
2π

∑
λ=±

m∑
j=1

z∗
λ

k

(
v∗

j,1,λe−ik(bj −x) + v∗
j,2,λ e−ik(bj +x)

)
+ O(z2), (B.3)
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m is a positive integer, and bj and vj,b,λ are respectively real and complex free coefficients. By
defining μ(b) := 2b − 3, we can rewrite φv

1,k(x) in a more compact form, namely

φv
1,k(x) = 1√

2π

∑
λ=±

2∑
b=1

m∑
j=1

iz∗
λv

∗
j,b,λ

k
e−ik[bj +μ(b)x] + O(z2). (B.4)

For the cases where (B.2) holds, we can use (6) to express η(x, y) = 〈x|η|y〉 as

η(x, y) =
∫ ∞

−∞
φ	z

1,k(x)
(
φ	z

1,k(y)
)∗

dk. (B.5)

Using

1

iπ

∫ ∞

−∞

eikα

k
dk = sign(α),

1

2π

∫ ∞

−∞
eikα dk = δ(α) (B.6)

and (B.1)–(B.5), we then find

η(x, y) = δ(x − y) + η(1)(x, y) + O(z2), (B.7)

where

η(1)(x, y) := η(1)
+ (x, y) + η

(1)
− (x, y) + η(1)

v (x, y) + (x ↔ y)∗ , (B.8)

η(1)
+ (x, y) := z+

4
{sign(x + y − 2a) − sign(x − y)} θ(y − a), (B.9)

η
(1)
− (x, y) := −z−

4
{sign(x + y + 2a) − sign(x − y)} θ(−y − a), (B.10)

η(1)
v (x, y) :=

∑
λ=±

2∑
b=1

m∑
j=1

η
(1)

j,b,λ(x, y) =
∑
λ=±

2∑
b=1

m∑
j=1

zλvj,b,λ

2
sign(x + μ(b)y + bj ). (B.11)

Note that η
(1)
v (x, y) depends on our choice of the free coefficients vj,b,λ and bj in (B.4).

Our aim is to make a choice that would lead to an appropriate metric operator.
First, we use the identity

sign(u + v)[sign(u) + sign(v)] = 1 + sign(u) sign(v), (B.12)

to obtain

η(1)
+ (x, y) = z+

8
[−2 sign(x − y) − sign(x− + y−) + 1] +

z+

4
sign(x − y)θ(−x− − y−)

= z+

8
[sign(x− + y−) + 1] − z+

4
sign(x − y)θ(x− + y−), (B.13)

η
(1)
− (x, y) = z−

8
[2 sign(x − y) − sign(x+ + y+) + 1] − z−

4
sign(x − y)θ(x+ + y+), (B.14)

where x± and y± are given by equation (43).
Next, we rewrite φv

1,k(x) in the form

φv
1,k(x) = φ′v

1,k(x) − i

k
√

2π

[
z∗

+

4
e−ik(x−2a) − z∗

−
4

e−ik(x+2a) +
z∗
−
2

eikx

]
, (B.15)

where

φ′v
1,k(x) := 1√

2π

∑
λ=±

2∑
b=1

m′∑
j=1

iz∗
λv

∗
j,b,λ

k
e−ik(bj +μ(b)x),
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and m′ is a positive integer. Using the above equations, the first-order term η(1)(x, y) of
η(x, y) can be rewritten as

η(1)(x, y) = η′(1)

+ (x, y) + η′(1)

− (x, y) + η′(1)

v (x, y) + (x ↔ y)∗ , (B.16)

η′(1)

± (x, y) = z±
8

[1 − 2 sign(x − y)θ(x∓ + y∓)], (B.17)

η′(1)

v (x, y) =
∑
λ=±

2∑
b=1

m′∑
j=1

η
(1)

j,b,λ(x, y) =
∑
λ=±

2∑
b=1

m′∑
j=1

zλvj,b,λ

2
sign(x + μ(b)y + bj )

= η(1)
v (x, y) +

z+

8
sign(x− + y−) − z−

8
sign(x+ + y+) +

z−
4

sign(x − y). (B.18)

Setting φ′v
1,k(x) = 0 or equally η′(1)

v (x, y) = 0 yields

η′(1)
(x, y) = η′(1)

+ (x, y) + η′(1)

− (x, y) + (x ↔ y)∗, (B.19)

which is generally not a bounded operator. But if we confine our attention to the special case
where z+ = −z− =: z, we find

η′(1)
(x, y) = i�(z)

2
sign(x − y)[θ(x+ + y+) − θ(x− + y−)], (B.20)

which is a bounded operator [6].
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